Is it the end of Moore` s Law? (part 1)

Moore ` Law

It is about twenty years, that is, since about when I started to become seriously interested in microelectronics and IC lithography, that I have heard this question from time to time: is Moore`s Law coming to an end?

And, if not then, until when will it last?

I still remember the old days in which researchers and “pundits” assured us that there would have been no way IC lithography could go beyond 0.1μm.

At first, let`s think what it would mean for the whole electronics industry if the current trend over continuous miniaturization of transistors would come to an end

Entire portions of the software industry and of the internet market have benefited, if not completely depended upon, the exponential growth of computing power we have witnessed in the last 40 years.

It is likely that such industries, along with others like the gaming industry, will be badly affected if Moore` s Law loses steam.

So, the question is: Is Moore` s Law anywhere close to the end?

From many points of view it is clear that the famous trend of keeping the number of circuits doubling every two years is becoming increasingly difficult and requires at every node a revolutionary, not just an evolutionary, approach as it happened in the recent past

A recent example of such radical innovations is the change from planar CMOS to FinFet architectures .

Even more recently, there has been much talk about moving away from silicon to overcome some of the major obstacles for further die shrinking and die stacking

Simple and brute force die shrinking is due to end soon as quantum tunneling is already starting to influence physical properties of transistors at the 10nm and would probably hinder any further progression at the 7nm node or 5nm node at best.

And even if, in principle, quantum tunneling effects could be included in the design of the IC so that they would not necessarily cause a disruption, simple economic considerations would put an halt to Moore` s Law.

Only one or two decades ago, a new state-of-the-art IC fab would have cost few hundreds of millions of US$, now we are in the range of US$4 billion for a new fab.

If the trend continues, we will soon be in the whereabouts of $10 billion per new fab. Very few governments, and no company, can invest such amount of money for a single fab. [to be continued]

Subscribe to our newsletter to receive our new articles directly in your mail box.

If you liked this article, please give it a quick review in StumbleUpon, Facebook or Pinterest.

Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title="" rel=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>